Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2763: 321-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347421

RESUMO

O-Linked glycans potentially play a functional role in cellular recognition events. Recent structural analyses suggest that O-glycosylation can be a specific signal for a lectin receptor which recognizes both the O-glycan and the adjacent polypeptide region. Further, certain antibodies specifically bind to the O-glycosylated peptide. There is growing interest in the mechanism by which O-glycans on proteins are specifically recognized by lectins and antibodies. The recognition system may be common to many O-glycosylated proteins; however, there is limited 3D structural information on the dual recognition of glycan and protein. This chapter describes a solution NMR analysis of the interaction between MUC1 O-glycopeptide and anti-MUC1 antibody MY.1E12.


Assuntos
Glicopeptídeos , Mucina-1 , Glicopeptídeos/química , Anticorpos , Peptídeos , Lectinas , Polissacarídeos/química
2.
Methods Mol Biol ; 2763: 373-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347427

RESUMO

Advances in computer performance and computational simulations allow increasing sophistication in applications in biological systems. Molecular dynamics (MD) simulations are especially suitable for studying conformation, dynamics, and interaction of flexible biomolecules such as free glycans and glycopeptides. Computer simulations are best performed when the scope and limitations in performance have been thoroughly assessed. Proper outputs are obtained only under suitable parameter settings, and results need to be properly validated. In this chapter, we will introduce an example of molecular dynamics simulations of MUC1 O-glycopeptide and its docking to anti-MUC1 antibody Fv fragment.


Assuntos
Simulação de Dinâmica Molecular , Mucina-1 , Anticorpos Monoclonais , Glicopeptídeos/química , Conformação Molecular , Simulação de Acoplamento Molecular
3.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887202

RESUMO

Anti-mucin1 (MUC1) antibodies have been widely used for breast cancer diagnosis and treatment. This is based on the fact that MUC1 undergoes aberrant glycosylation upon cancer progression, and anti-MUC1 antibodies differentiate changes in glycan structure. MY.1E12 is a promising anti-MUC1 antibody with a distinct specificity toward MUC1 modified with an immature O-glycan (NeuAcα(2-3)Galß(1-3)GalNAc) on a specific Thr. However, the structural basis for the interaction between MY.1E12 and MUC1 remains unclear. The aim of this study is to elucidate the mode of interaction between MY.1E12 and MUC1 O-glycopeptide by NMR, molecular dynamics (MD) and docking simulations. NMR titration using MUC1 O-glycopeptides suggests that the epitope is located within the O-linked glycan and near the O-glycosylation site. MD simulations of MUC1 glycopeptide showed that the O-glycosylation significantly limits the flexibility of the peptide backbone and side chain of the O-glycosylated Thr. Docking simulations using modeled MY.1E12 Fv and MUC1 O-glycopeptide, suggest that VH mainly contributes to the recognition of the MUC1 peptide portion while VL mainly binds to the O-glycan part. The VH/VL-shared recognition mode of this antibody may be used as a template for the rational design and development of anti-glycopeptide antibodies.


Assuntos
Glicopeptídeos , Simulação de Dinâmica Molecular , Anticorpos Monoclonais , Glicopeptídeos/química , Espectroscopia de Ressonância Magnética , Mucina-1/metabolismo , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...